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Abstract — Steady-state Rayleigh-B´enard convection in a medium with parameters close to the ther-
modynamic critical point is simulated within the framework of the complete Navier-Stokes equations
with a two-scale representation of the pressure and the Van-der-Waals equation of state. A calibration
relation is obtained for a realistic Rayleigh number in a compressible stratified medium. The parame-
ters of the numerical simulation are determined from experimental data for near-critical helium on the
basis of the calibration relation. The threshold Rayleigh numbers are found without and with allowance
for stratification and a comparison with the experimental and theoretical data is carried out. The effect
of compressibility of the near-critical fluid on steady-state convection flows is investigated beyond the
stability threshold and the effect of adiabatic compression of the medium is analyzed.

Keywords: near-critical fluid, Rayleigh-B´enard convection, simulation, stratification, hydrostatic com-
pressibility, adiabatic compression.

The problem of fluid or gas convection in a plane horizontal layer heated from below (Rayleigh-B´enard
problem) is one of the basic hydrodynamic problems studied in hydrodynamic stability and heat transfer
theories and has many diverse applications, in particular, in investigating large-scale motions in geo- and
astrophysics. Many authors have reviewed this research; we will mention only [1–3], published in the
last decade, which contain the complete bibliography. The Oberbeck-Boussinesq approximation used for a
weakly compressible medium is frequently employed in convection theory. This is entirely justified in many
practical cases. In this formulation the convection regime is determined by the Rayleigh number and the
onset of motion is determined by the threshold Rayleigh number. Already many investigations have been
carried out on the basis of the Oberbeck-Boussinesq model, including both calculations of two- and three-
dimensional flows in the neighborhood of the stability threshold of mechanical equilibrium and calculations
of transition and turbulent regimes with an exceptionally complex structure [2–5]. The calculations were
performed using direct numerical simulation methods.

However, in recent years fluids with parameters in the neighborhood of the thermodynamic critical point
(near-critical fluids) which have unusual properties, in particular, high compressibility, have attracted great
attention [6]. As the distance from the critical point decreases, the compressibility of these fluids increases
and tends to infinity at the critical point. For such systems the Oberbeck-Boussinesq approximation cannot
be used, except in certain particular cases, since the stratification effects are already significant even on the
laboratory scale.

In a compressible medium without viscosity and heat conduction the stable state is maintained due to the
density stratification associated with hydrostatic compressibility. The onset of convection is determined by
the limiting temperature gradient which was first found by Schwarzschild and is known in geo- and astro-
physical literature as the adiabatic temperature gradient. A general form of the expression for the adiabatic
temperature gradient was given in [7]. However, in order to find the conditions of onset of convection in
a near-critical fluid it is necessary to know this quantity in more detail since the physical properties of the
medium in the neighborhood of the critical point change substantially. For this purpose in [8] the equations
of isentropic equilibrium were solved and the adiabatic temperature gradient as a function of the height in
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a Van-der-Waals gas was found. A compressible medium with dissipation was considered in [9], where a
modified Rayleigh number, which includes the difference between the real and adiabatic temperature gradi-
ents instead of the real temperature gradient, was proposed as the criterion of onset of the motion.

In the first numerical investigations of Rayleigh-B´enard convection in a compressible perfect gas carried
out on the basis of the Navier-Stokes equations the condition of loss of stability was determined from the
supercritical state as the Rayleigh number decreases until the regime of heat transfer via heat conduction
in attained [10]. In this case the mutual influence of the Rayleigh and Schwarzschild criteria on the onset
and development of convection was taken into account and it was found that the threshold Rayleigh number
calculated without regard for stratification increases with the compressibility of the medium. The thresh-
old value of the modified Rayleigh number, which includes the difference between the real and adiabatic
temperature gradients [9] is almost independent of the hydrostatic compressibility [11].

In [12] consideration of the conditions of loss of stability of mechanical equilibrium in a near-critical
fluid was begun within the framework of a simplified model; recently, in [13] a fuller analysis of the onset
of convection in a medium with the Van-der-Waals equation of state in the neighborhood of the critical point
was carried out and a criterion of onset of motion similar to that of [12] was found. As for a perfect gas, the
modified Rayleigh number, whose form in [13] coincides with that given in [9], is the determining parameter
and its threshold value for a layer between two rigid boundaries is constant and equal to 1708, i.e., to the
threshold value of the Rayleigh number in the Oberbeck-Boussinesq approximation.

The theoretical representations so far accumulated make it possible a close approach to the analysis and
interpretation of experiments on Rayleigh-B´enard convection in near-critical media [14–16]. Extensive data
on heat transfer in helium from the onset of convection to initial turbulence presented in [16] initiated studies
[17–20] on numerical simulation under experimental conditions. In these studies the unsteady phenomena
developing in the interaction between convection and a type of heating called the piston effect, in which
the medium is heated due to adiabatic compression, were mainly investigated [21]. In experiments [16] the
threshold Rayleigh number was also found and the stratification effects due to hydrodynamic compressibility
were investigated. Attempts to compare the numerical results for the stability threshold were made in [22],
where, however, the role of stratification was unimportant since the conditions were considered at a large
distance from the critical point.

As compared with [22], in the present study we have carried out a fuller numerical simulation of steady-
state Rayleigh-B´enard convection in helium with near-critical characteristics in the neighborhood of the
stability threshold of mechanical equilibrium under the experimental conditions of [16]. The complete
Navier-Stokes equations with a two-scale representation of the pressure and the Van-der-Waals equation of
state are solved. A calibration relation for the Rayleigh number extended to convection flows with allowance
for stratification is introduced and used for calculating the simulation parameters. The threshold Rayleigh
numbers are determined for various distances from the critical point. The effect of stratification on onset of
motion is analyzed and, following the general approach [10, 11], the hydrodynamic compressibility effects
in steady-state Van-der-Waals gas flows are studied.

1. MATHEMATICAL DESCRIPTION OF A NEAR-CRITICAL FLUID
AND CALIBRATION RELATIONS

We will describe the dynamics of the near-critical fluid within the framework of the hydrodynamic model
including the complete Navier-Stokes equations with a two-scale representation of the pressure and a two-
parameter equation of state of an imperfect gas. In dimensionless form the input system of equations can be
written as follows [23]:

∂ρ
∂ t

+ ∇∇∇ (ρU) = 0 (1.1)

ρ
∂U
∂ t

+ ρ(U∇∇∇ )U = −∇∇∇ p +
1

Re

(
2∇∇∇ (η Ḋ) − ∇∇∇

(
2
3

η − ζ
)

∇∇∇ U
)

+
Ra

PrΘRe2ρg (1.2)
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ρ
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)
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RePr
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3
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(∇∇∇ U)2
)

(1.3)

P = P(ρ, T), P = 〈P〉 + γ0M2p,

∫

V

pdv= 0 (1.4)

Here,ρ, U, Ḋ, andT are the density, the velocity, the strain rate tensor, and the gas temperature;P, 〈P〉,
andp are the total, average, and dynamic pressures,g is the gravity force acceleration;η , ζ , andλ are the
dynamic and second viscosities and the thermal conductivity,dv is a volume element of the domain, and
V is the total volume. The characteristic scales are as follows:l ′, U ′, l ′/U ′, U ′/l ′ (l ′ is the length),ρ ′

c, T ′
c

(subscriptc denotes the quantities at the critical point),B′ρ ′
cT

′
c for P, 〈P〉, ρ ′

cU
′2
c for p, λ ′

0, η ′
0, c′ν0 (subscript

“0” denotes the parameters of a perfect gas andc′ν is the specific heat at constant pressure), and the Earth’s
gravity force accelerationg′. Dimensional quantities are denoted by primes and the dimensionless ones have
no prime.

Splitting of the total pressure into two components used earlier in the perfect gas model [24] makes it pos-
sible effectively to simulate both the acoustic and slow (convective) processes; more detailed explanations
are given in [23].

System (1.1)–(1.4) contains the following dimensionless parameters:

Re=
ρ ′

cU
′l ′

η ′
0

, Ra=
Θ′g′l ′3ρ ′2(c′v0 + B′)

T ′
cλ ′

0η ′
0

, Pr=
(c′v0 + B′)η ′

0

λ ′
0

Θ =
Θ′

T ′
c
, γ0 = 1 +

B′

c′ν0

, M =
U ′√
γ0B′T ′

c

(1.5)

which represent the Reynolds, Rayleigh, and Prandtl numbers, the characteristic temperature difference, the
specific heat ratio, and the Mach number, respectively.

The medium is stratified; under the hydrostatic equilibrium conditions the density and total pressureρ
andP are assumed to vary linearly

ρ = ρb

(
1 +

(
∂ρb

∂ pb

)
T

εg g(r − rb)
)

, P = pb + ρbεgg(r − rb), εg =
γ0M2Ra

PrΘRe2 (1.6)

Here,εg is the hydrostatic compressibility parameter. On the boundary at a point with the radius-vector
rb the quantities are denoted by the subscript “b”. For a very close approach to the critical point the density
and pressure distributions over the height are more complex; however, under the conditions in question
approximation (1.6) can be used.

In the neighborhood of the critical point the thermal conductivityλ increases asymptotically:λ = 1 +
Λε−ψ , whereε = (T ′ − T ′

c)/T ′
c is the temperature parameter characterizing the proximity to the critical

point and the viscosities are constant:η = const andζ = 0. In order to define the model system of equations
uniquely it is necessary to give concrete expression to the equation of state (1.4). We will use the Van-der-
Waals equation of state

P =
ρT

1 − bρ
− aρ2, a =

9
8
, b =

1
3

(1.7)

It is a feature of the dynamics of near-critical fluids that the model numbers Ra and Pr (1.5) which
enter into the main system of equations are constructed on the basis of characteristics of the medium far
away from the critical point and in themselves do not describe the variations of the physical properties in
the neighborhood of the critical point. However, as the distance from the critical point decreases, the true
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values of the Rayleigh and Prandtl numbers tend to infinity; therefore, it has been proposed to consider
modified dimensionless numbers, called real in [25], which take into account the features of the behavior of
thermodynamic quantities in the critical neighborhood. For flows “insensitive” to stratification an expression
for the real Rayleigh number Rar denoted by the subscript “r” was obtained in [25]; in the case of stratified
media this expression need to be corrected.

The convection of a near-critical fluid in the presence of stratification can be characterized by the modi-
fied Rayleigh number Ras

r [13]:

Ras
r =

(
∂Θ′

∂y′
−

(
∂Θ′

∂y′

)
ad

) β ′g′l ′4ρ ′2c′p
λ ′h′

(1.8)

Instead of the quantity∂Θ′/∂y′ in Rar , expression (1.8) contains the difference between the real temper-
ature gradient in the neighborhood of the heated boundary∂Θ′/∂y′ and the adiabatic temperature gradient
(∂Θ′/∂y′)ad andc′p is the specific heat at constant pressure. We can readily obtain the relation between Rar

and Rasr

Ras
r = kRar , k = 1 − (∂Θ′/∂y′)ad

∂Θ′/∂y′
(1.9)

We will investigate a neighborhood of the critical isochore (the properties of the fluid depend only on the
temperature parameterε). Under these conditions the expression for Rar characteristic of the medium with
a Van-der-Waals equation of state has the form [25]:

Rar =
2
3

ε−1
(

1
γ0

+
γ0 − 1

γ0

1 + ε
ε

)
1
λ

Ra (1.10)

We will find the coefficientk. Following [7], we define the adiabatic temperature gradient by the relation

(
∂Θ′

∂y′

)
ad

=
g′β ′T ′

c′p
(1.11)

The coefficientsβ ′ andc′p depend on the parameters of the medium in accordance with the following
expressions [26]:

β ′ = − 1
ρ ′

(
∂ρ ′

∂T ′

)
P′

, c′p = c′v +
T ′

ρ ′2

(
∂P′

∂T ′

)2

ρ ′

(
∂ρ ′

∂P′

)
T ′

(1.12)

which diverge asymptotically at the critical point since(∂ρ ′/∂T ′)P′ → ∞ and (∂ρ ′/∂T ′)T ′ → ∞. Using
the Van-der-Waals equation of state, we can obtain the following expression for the adiabatic temperature
gradient: (

∂Θ′

∂y′

)
ad

=
2g′

3B′
(1 + ε)(γ0 − 1)

ε + (1 + ε)(γ0 − 1)
(1.13)

Estimating the real temperature gradient as the ratio of the temperature difference on the boundary of the
domain and the distance between the boundaries∂Θ′/∂y′ = Θ′/l ′ , we obtain the dependence

FLUID DYNAMICS Vol. 40 No. 2 2005
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ε λ cp β Rae/Θ Pre

5.00·10−4 2.99 2.05·104 5.99·103 2.28·1014 586

1.00·10−3 2.32 9.03·104 2.64·103 5.74·1013 328

2.00·10−3 1.86 3.97·104 1.16·103 1.38·1013 177

5.00·10−3 1.47 1.35·104 3.91·102 2.00·1012 74.8

9.00·10−3 1.32 6.86·103 1.96·102 5.68·1011 41.9

1.00·10−2 1.30 6.08·103 1.73·102 4.55·1011 37.7

2.00·10−2 1.18 2.78·103 7.68·101 1.01·1011 18.7

3.00·10−2 1.13 1.78·103 4.82·101 4.22·1010 12.4

4.00·10−2 1.10 1.31·103 3.45·101 2.21·1010 9.28

5.00·10−2 1.09 1.03·103 2.67·101 1.41·1010 7.43

6.00·10−2 1.08 8.56·102 2.16·101 9.56·109 6.22

7.00·10−2 1.07 7.34·102 1.82·101 6.94·109 5.36

8.00·10−2 1.06 6.41·102 1.55·101 5.21·109 4.71

9.00·10−2 1.06 5.72·102 1.35·101 4.08·109 4.22

1.00·10−1 1.06 5.17·102 1.20·101 3.26·109 3.83

1.20·10−1 1.05 4.36·102 9.65 2.22·109 3.25

1.40·10−1 1.05 3.80·102 8.00 1.61·109 2.84

1.60·10−1 1.05 3.37·102 6.75 1.20·109 2.53

1.70·10−1 1.05 3.19·102 6.23 1.05·109 2.41

1.80·10−1 1.05 3.04·102 5.78 9.29·108 7.07

2.00·10−1 1.06 2.78·102 5.00 7.30·108 6.48

k = 1 − 2εg

3Θ
(1 + ε)(γ0 − 1)

ε + (1 + ε)(γ0 − 1)
(1.14)

In [25] the expressions of type (1.9) and (1.10), which relate the model and real dimensionless numbers,
were called the calibration relations. For the Prandtl number the calibration relation found in [25] can be
represented by the equality

Prr =
(

1
γ0

+
γ0 − 1

γ0

1 + ε
ε

)
1
λ

Pr (1.15)

In a compressible stratified medium loss of stability of mechanical equilibrium occurs when RaS
r > Ras∗

r ,
where Ras∗r is a threshold value. As mentioned above, in a near-critical fluid layer Ras∗

r = 1708 regardless of
the proximity to the critical point. However, if we calculate the Rayleigh number for this medium neglecting
stratification, convection will develop when Rar > Ra∗r , where the threshold value Ra∗

r increases with the
distance from the critical point. In what follows, these relations will be verified.

2. STABILITY THRESHOLD OF MECHANICAL EQUILIBRIUM

We will simulate Rayleigh-B´enard convection in3He on the basis of experiments carried out in a cell
1 mm high and 57 mm in diameter under ground surface conditions [16]. On the upper and lower cell
boundaries the temperature was maintained constant and increased very slowly, respectively. The average
density was critical. In helium the critical point is reached whenT ′

c = 3.3189 K,ρ ′
c = 0.0414 g/cm3, and

P′
c = 0.117 MPa [16]. The compressibility factorZ = 0.3074, whereZ = P′

c/(B
′ρ ′

cT
′
c), B′ = R′/µ ′

g, R′ =
8.31·107 erg/(K·mole), andµ ′

g = 3 g/mole.
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In order to match the simulation parameters we need to know the experimental values of the Prandtl
number Pre and the Rayleigh number divided by the temperature difference on the boundaries Rae/Θ, which
are calculated from the physical properties. In the critical neighborhood the properties of helium were
determined on the interval 5·10−4 ≤ ε ≤ 0.21. The value of Rae/Θ can be calculated from the expression

Rae

Θ
=

T ′
cβ ′g′l ′3ρ ′2c′p

λ ′η ′ =
βcpZ
λγ0

Ra
Θ

(2.1)

The specific heatcp can be determined fromcv andγ: cp = cvγ. The coefficientβ can be determined
from the relation

β =
cv(γ − 1)

(1 + ε)(∂P/∂T)ρ
(2.2)

which follows from (1.12) on nondimensionalization. In (2.1) and (2.2) the dimensionless quantities were
obtained using the same scales as in [27]:P′

c/(ρ ′
cT

′
c) for cp andcv, P′

c/T ′
c for (∂P/∂T)ρ , 1/T ′

c for β , and
λ ′

0 for λ . Professor H. Meyer has provided to us with a table of the experimental data onλ ′, cv, γ, and
(∂P/∂T)ρ and the values of Pre. The table also gives the values ofλ , cp, β , and Rae/Θ calculated from
these data. The model parameters can be determined from the experimental values on the basis of the
conditions Prr = Pre and Rar/Θ = Rae/Θ, and then Pr and Ra/Θ entering into the main system of equations
can be calculated from (1.10) and (1.15). Below, we give the results of calculations for certainε.

In view of the computational difficulties involved in carrying out the numerical calculations for a large-
aspect ratio layer, in this simulation stage we considered a cell containing a single convective vortex in a
1 mm square domain. We assumed that the horizontal boundaries are isothermal with no-slip and the vertical
boundaries adiabatic with slip. The system is characterized by the following dimensional and dimensionless
quantities:

l ′ = 0.1 cm, U ′ = 28.5 cm/s, g′ = 9.8·102 cm/s2, η ′
0 = 16.7·10−6 g/(cm·s),

c′v0 = 4.12·107 erg/(K ·g), λ ′
0 = 1.73·10−4 W/cm·K, Re= 8.33·103,

γ = 1.667, M = 10−3, Λ = 0.0149, ψ = 0.645

ε = 0.02, Ra/θ = 2.271·107, Pr= 1.056, Ra∗r = 6190

Rar 6585 6545 6504 6464 6424
Nu 1.086 1.077 1.068 1.060 1.051

ε = 0.04, Ra/θ = 1.842·107, Pr= 0.9436, Ra∗r = 2597

Rar 2721 2712 2703 2694 2684
Nu 1.064 1.059 1.054 1.050 1.045

ε = 0.06, Ra/θ = 1.224·107, Pr= 0.8528, Ra∗r = 1902

Rar 1979 1973 1967 1961 1956
Nu 1.056 1.052 1.047 1.043 1.039

ε = 0.08, Ra/θ = 1.121·107, Pr= 0.8444, Ra∗r = 1804

Rar 1915 1900 1884 1864 1853
Nu 1.082 1.071 1.059 1.048 1.034

ε = 0.10, Ra/θ = 1.384·107, Pr= 0.8145, Ra∗r = 1804

Rar 1986 1961 1935 1908 1882
Nu 1.128 1.111 1.092 1.074 1.055

1H. Meyer. Table. Private communication.

FLUID DYNAMICS Vol. 40 No. 2 2005
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Ra∗r ,

Ras∗
r

ε

Fig. 1. Threshold Rayleigh numbers without and with allowance for stratification: Ra∗
r (curve1) and Ras∗r (curve2), and

the experimental value Ra∗r [16] (3) as functions of the temperature parameterε

The values ofλ ′
0, Λ, andψ were obtained in [22] by approximating the experimental data on the thermal

conductivity (see footnote on page 214). The numerical method was described in [27].
We carried out five series of calculations for five values of the parameterε determined from the tem-

perature of the upper boundary on the intervalε ∈ [0.02–0.1]. In each series the temperature on the lower
boundary was higher by a quantityΘ than that on the upper boundary. This quantity was varied in different
variants. We began to integrate the initial system of equations from the minimum value ofΘ and continued
integrating until the fluid motion became steady-state. Then the lower surface was slowly heated to the next
value ofΘ and the calculations were continued until another steady state was established. As a result, we
obtained a series of steady-state solutions for variousΘ, each solution corresponding to its own value of
Rar . In all the variants the Nusselt number Nu was determined from the expression

Nu =
1
j ′

l ′∫

0

λ ′ ∂T ′

∂y′
dx′, j ′ = λ ′

j
Θ′

l ′
(2.3)

where j ′ and λ ′
j are the heat flux and the thermal conductivity in the medium at rest. The Nu number

characterizes the heat transfer rate in the presence of convection and can be calculated on the lower and
upper boundaries; in steady-state flows the two quantities coincide. The values of Rar and Nu are given
above. We used a 61×71 vertically-nonuniform space grid, the time step was 1·10−4–3·10−4, the approach
to the steady-state regime took 3.5·103 s of physical time. The calculations were carried out using an AMD
Athlon XP 1500 personal computer (1.33 GHz CPU frequency) and took approximately three months of
computer time. For smallerε no calculations were carried out since they required too much computation
time due to the deceleration of the relaxation processes the critical point is approached.

Using the solutions obtained, we determined the threshold number Ra∗
r for eachε. For this purpose the

dependences Nu at Rar were extrapolated to Nu= 1 for which there is no convection; in the neighborhood of
the stability threshold the functions Nu(Rar) were assumed to be linear. Above, we have presented the Ra∗

r
numbers which, as can be seen, increase with decrease inε. In Fig. 1 we have plotted graphs of the function
Ra∗r (ε) and compared it with the experimental data [16]. We note that the results of the calculations for
ε ∼ 0.1 are in fairly good agreement with the experimental data, but asε decreases the agreement becomes
only qualitative. A similar quantitative discrepancy is attributable to using the Van-der-Waals equation of
state which, as is well known, describes the near-critical fluid with low accuracy. The growth in Ra∗

r with
increase in the compressibility of the medium was also detected in the case of a perfect gas [10].

Then for each Rar we calculated Rasr from (1.9), (1.14) with allowance for stratification. In Fig. 2 we have
reproduced graphs of the function Nu(Ras

r) for variousε. Whenε ≥ 0.06 the role of the compression effects
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Nu

Ras
r

Fig. 2. Nusselt number Nu as a function of the Rayleigh number Ras
r for ε = 0.1, 0.08, 0.06, 0.04, and 0.02 (curves1–5,

respectively)

u′, cm/s

v′, cm/s

Fig. 3. Distributions of the horizontalu′(0.5, y) (continuous curves) and verticalv′(x, 0.5) (chain curves) velocity compo-
nents forε = 0.1 and 0.02 (curves1 and2, respectively)

is insignificant and the straight lines almost coincide. However, whenε < 0.06 the angle of inclination of the
straight lines becomes smaller, i.e., the increase in the Nusselt number slows as the distance from the critical
point decreases. The heat transfer beyond the stability threshold will be analyzed in the next section. Similar
behavior of the Nusselt number with increase in the compressibility of the medium was also observed in a
perfect gas [11].

Using Nu(Ras
r), we calculated the threshold values of Ras∗

r reached at Nu= 1; they are presented in Fig. 1.
They show that the value of Ras∗

r is almost constant for allε; the maximum deviation from Ras∗
r = 1708 is

not more than 0.5%.

3. COMPRESSIBILITY EFFECTS IN STEADY-STATE FLOWS

In what follows we will compare two flows which develop in media of different compressibilities (for
ε = 0.1 andε = 0.02) but create heat transfer with the same Nusselt number: Nu= 1.051. As follows from
Fig. 2, the compression effects are small in the first case and significant in the second.

Figure 3 illustrates the distributions of the horizontal and vertical velocity componentsu′(0.5, y) and

FLUID DYNAMICS Vol. 40 No. 2 2005



RAYLEIGH-BÉNARD CONVECTION IN A NEAR-CRITICAL FLUID 217

Fig. 4. Isotherms forε = 0.1 (a) andε = 0.02 (b)

v′(x, 0.5) along the central vertical and horizontal lines and shows that the flow velocity decreases with
decrease inε. Accordingly, forε = 0.02 the thermal field turns out to be more uniform than forε = 0.1,
i.e., in the first case the isotherms represented in Fig. 4 are less curved. Thus, with decrease inε the
intensification of heat transfer characterized by the same value of Nu takes place in the less intense flow.
This means that in addition to convection a further mechanism, which creates an additional temperature
gradient in the neighborhood of the boundary, appears with increase in compressibility.

The nature of this mechanism is related to the thermodynamics of the medium whose state can generally
be described by the relation

dT′ = − 1
ρ ′β ′dρ ′ +

(
∂T ′

∂P′

)
ρ ′

dP′ (3.1)

In weakly compressible media the second term on the right side is much less than the first; therefore, the
variations of the temperature are determined only by the variations of the density, i.e., in the presence of
heat inflow due to heat conduction and internal friction, the density decreases owing to thermal expansion,
while the temperature increases. When the parameters of the medium tend to the critical values and the
thermal expansion coefficientβ ′ tends to infinity, the first term on the right tends to zero and becomes
commensurable with the second. Under these conditions effects driven by the pressure difference begin to
manifest themselves.

In the gravity force field the pressure increases downwards. If a fluid element rises, it is subjected to
steadily lower pressure from the surrounding mass; therefore, it expands and cools. Conversely, the pressure
on a descending volume element increases, compressing and heating it. Thus, an additional temperature
gradient associated with adiabatic compression of the medium and directed downward appears in the pres-
ence of stratification. In absolute value this temperature gradient coincides with the adiabatic temperature
gradient(∂Θ′/∂y′)ad since, like the latter, it is formed under isentropic conditions in the stratified medium.
The formation of an adiabatic temperature gradient was confirmed experimentally in [16].

In Fig. 5 we have plotted graphs of the density, pressure, and temperature as functions of the height
at the center of a computation cell. Clearly, as compared withε = 0.10, in the flow withε = 0.02 the
density drops∆ρ ′ = ρ ′ − ρ ′

c are reduced by several times (Fig. 5a) and, in accordance with Table 1, the
coefficientβ ′ increases by 6.4 times; therefore, in fact, the first term in (3.1) sharply decreases. The pressure
function p′ varies only slightly (Fig. 5b) so that the second term in (3.2) also varies only slightly and makes
a weightier contribution to the temperature increment. In Fig. 5b we have reproduced the dynamic pressure
p′ whose gradient coincides with the total pressure gradientP′ since the average value〈P′〉 = P′ − p′ is
independent of the space coordinates. As the distance from the critical point decreases, the temperature
difference∆T ′ = T ′ − T ′

i determining the motion is reduced due to the increase inβ ′ (Fig. 5b). This was
detected experimentally in [16]. The convection flow smoothes the stratification inhomogeneities leading to
a more uniform vertical mass distribution: whenε = 0.02 the density drops∆ρ ′ in the moving fluid turn out
to be less than those under equilibrium conditions∆ρ ′

e = ρ ′
e − ρ ′

c (Fig. 5a).
Thus, an additional temperature gradient develops in the stratified compressible medium. This gradient

is not related with heat transfer but enters into the Nusselt number calculations (2.3). In order to determine
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∆ρ′, ∆ρ′
e, g/cm3

p′, Pa

∆T ′, K

Fig. 5. Deviation of the density from the critical density during motion∆ρ′ (continuous curves) and under conditions of
mechanical equilibrium (broken curves) (a) and deviation of the temperature from the initial temperature∆T ′ (continuous
curves) and the dynamic pressure (broken curves) (b) in the central vertical cross-section forε = 0.1 and 0.02 (curves1 and
2, respectively)

how much the convection flow really intensifies the heat transfer as compared with heat conduction it is
necessary to consider the modified Nusselt number Nus, excluding the adiabatic temperature gradient:

Nus =
1
j ′s

l ′∫

0

λ ′
(

∂T ′

∂y′
−

(
∂Θ′

∂y′

)
ad

)
dx′, j ′s = λ ′

j

(
Θ′

l ′
−

(
∂Θ′

∂y′

)
ad

)
(3.2)

Under the conditions investigatedΘ
 ε; therefore, the physical properties of the near-critical fluid vary
only slightly over space. This makes it possible to assume that in the medium at restΘ′/l ′ = ∂Θ′/∂y′ and
in the presence of convectionλ ′ = λ ′

j and reduce the expression for Nus to the form:

Nus = 1 + (Nu − 1)
1
k

(3.3)

The coefficientk was defined in (1.9).
We calculated Nus for all the available values of Nu(Ras

r) and the results are shown in Fig. 6. For
comparison purposes we have also reproduced the dependence obtained from the experimental data for air
which on the interval 1708< Ra< 5830 has the form [28]:

Nu = 1 + 1.44

(
1 − 1708

Ra

)
(3.4)

The experiments were carried out under ordinary conditions far from the critical point, and the air was
only slightly compressible so that Ras

r = Ra and Nus = Nu. The calculated points fit the experimental curve
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Nus

Ras
r

Fig. 6. Nusselt number Nus as a function of the Rayleigh number Ras
r in the calculations carried out in the present study

for ε = 0.1, 0.08, 0.06, 0.04, and 0.02 (curves1–5, respectively) and obtained experimentally [28] (continuous curve)

with high accuracy, i.e., convection in a highly compressible near-critical fluid intensifies the heat transfer
on the boundary in the same way as in a weakly compressible medium.

Summary. In order to determine the stability threshold of mechanical equilibrium of a near-critical fluid
in the Rayleigh-B´enard problem it is necessary to know the real dimensionless numbers, in particular, the
Rayleigh number. The numerical simulation carried out using experimental data for near-critical helium [16]
showed that the threshold value Ra∗

r calculated without allowance for stratification increases as the distance
to the critical point decreases. The agreement between this result and the experimental data is qualitative,
evidently due to the use of an insufficiently exact equation of state. However, by using this approach, on the
basis of the experimental dependence for the threshold values Ra∗

r we can choose an equation of state which
describes the medium more accurately in the neighborhood of the critical point.

For a stratified medium a calibration relation is found for the real Rayleigh number Ras
r . The thresh-

old value Ra∗r calculated in the study is almost constant regardless of the proximity to the critical point.
This result is in complete agreement with theory [13] and experiment [16]. This confirms the validity of
the calibration relation obtained for Ras

r and the technique for determining the model parameters from the
experimental data.

When a compressible medium moves, in the case of steady-state convection flows beyond the stability
threshold an additional temperature gradient equal to the adiabatic temperature gradient is formed. This
temperature gradient is not related with the heat transfer but is due to the pressure gradient. In order to
determine the convective heat transfer this temperature gradient must be eliminated from the calculations
for the Nusselt number. The Nusselt number thus calculated indicates that convective heat transfer in highly
and weakly compressible media has the same intensity. Earlier, adiabatic compression effects were detected
in the time-dependent flows of a near-critical fluid. In particular, the piston effect in which the medium is
heated while being compressed under the action of the boundary layer pressure is well known. In the present
study the adiabatic compression effect manifested in steady-state flows is investigated.

The authors wish to thank Professor H. Meyer for the data on physical properties of helium in the neigh-
borhood of the critical point.

The work was carried out with financial support from the Russian Foundation for Basic Research (projects
Nos. 03-01-00682 and 04-01-00630).
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